9 Preloaded data and mtcars

R comes with several built-in data sets, which are generally used as demo data for playing with R functions.

To see the datasets type:

data()

9.1 Practicing with mtcars data set

This demonstration is based on the datasset mtcars.

  1. Read in mtcars
data(mtcars)
  1. View first few rows and last few rows of mtcars dataframe using functions head() and tail()
head(mtcars)
#>                    mpg cyl disp  hp drat    wt  qsec vs am
#> Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1
#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1
#> Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1
#> Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0
#> Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0
#> Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0
#>                   gear carb
#> Mazda RX4            4    4
#> Mazda RX4 Wag        4    4
#> Datsun 710           4    1
#> Hornet 4 Drive       3    1
#> Hornet Sportabout    3    2
#> Valiant              3    1
tail(mtcars)
#>                 mpg cyl  disp  hp drat    wt qsec vs am
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.7  0  1
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.9  1  1
#> Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.5  0  1
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.5  0  1
#> Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.6  0  1
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.6  1  1
#>                gear carb
#> Porsche 914-2     5    2
#> Lotus Europa      5    2
#> Ford Pantera L    5    4
#> Ferrari Dino      5    6
#> Maserati Bora     5    8
#> Volvo 142E        4    2
  1. Some info about mtcars dataframe using function colnames(), rownames(), summary()and dim()
colnames(mtcars)
#>  [1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"  
#>  [9] "am"   "gear" "carb"
rownames(mtcars)
#>  [1] "Mazda RX4"           "Mazda RX4 Wag"      
#>  [3] "Datsun 710"          "Hornet 4 Drive"     
#>  [5] "Hornet Sportabout"   "Valiant"            
#>  [7] "Duster 360"          "Merc 240D"          
#>  [9] "Merc 230"            "Merc 280"           
#> [11] "Merc 280C"           "Merc 450SE"         
#> [13] "Merc 450SL"          "Merc 450SLC"        
#> [15] "Cadillac Fleetwood"  "Lincoln Continental"
#> [17] "Chrysler Imperial"   "Fiat 128"           
#> [19] "Honda Civic"         "Toyota Corolla"     
#> [21] "Toyota Corona"       "Dodge Challenger"   
#> [23] "AMC Javelin"         "Camaro Z28"         
#> [25] "Pontiac Firebird"    "Fiat X1-9"          
#> [27] "Porsche 914-2"       "Lotus Europa"       
#> [29] "Ford Pantera L"      "Ferrari Dino"       
#> [31] "Maserati Bora"       "Volvo 142E"
summary(mtcars)
#>       mpg             cyl             disp      
#>  Min.   :10.40   Min.   :4.000   Min.   : 71.1  
#>  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8  
#>  Median :19.20   Median :6.000   Median :196.3  
#>  Mean   :20.09   Mean   :6.188   Mean   :230.7  
#>  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0  
#>  Max.   :33.90   Max.   :8.000   Max.   :472.0  
#>        hp             drat             wt       
#>  Min.   : 52.0   Min.   :2.760   Min.   :1.513  
#>  1st Qu.: 96.5   1st Qu.:3.080   1st Qu.:2.581  
#>  Median :123.0   Median :3.695   Median :3.325  
#>  Mean   :146.7   Mean   :3.597   Mean   :3.217  
#>  3rd Qu.:180.0   3rd Qu.:3.920   3rd Qu.:3.610  
#>  Max.   :335.0   Max.   :4.930   Max.   :5.424  
#>       qsec             vs               am        
#>  Min.   :14.50   Min.   :0.0000   Min.   :0.0000  
#>  1st Qu.:16.89   1st Qu.:0.0000   1st Qu.:0.0000  
#>  Median :17.71   Median :0.0000   Median :0.0000  
#>  Mean   :17.85   Mean   :0.4375   Mean   :0.4062  
#>  3rd Qu.:18.90   3rd Qu.:1.0000   3rd Qu.:1.0000  
#>  Max.   :22.90   Max.   :1.0000   Max.   :1.0000  
#>       gear            carb      
#>  Min.   :3.000   Min.   :1.000  
#>  1st Qu.:3.000   1st Qu.:2.000  
#>  Median :4.000   Median :2.000  
#>  Mean   :3.688   Mean   :2.812  
#>  3rd Qu.:4.000   3rd Qu.:4.000  
#>  Max.   :5.000   Max.   :8.000
dim(mtcars)
#> [1] 32 11
  1. To calculate the variance of weight:
var(mtcars$wt)
#> [1] 0.957379
  1. To get the histogram of hp, the code below will produce a histogram:
hist(mtcars$hp)
  1. To calculate the quantiles by percent:
quantile(mtcars$wt, c(.2, .4, .8))
#>   20%   40%   80% 
#> 2.349 3.158 3.770

9.2 Excerises for you:

  1. Find the minimum and maximum value of mpg

  2. Find the mean and standard deviation of data variable mpg

  3. What variable has a 3rd quartile value of 180.0?

  4. Create and explain what this means

  1. Create and explain what this means
#>             mpg        cyl       disp         hp
#> mpg   1.0000000 -0.8521620 -0.8475514 -0.7761684
#> cyl  -0.8521620  1.0000000  0.9020329  0.8324475
#> disp -0.8475514  0.9020329  1.0000000  0.7909486
#> hp   -0.7761684  0.8324475  0.7909486  1.0000000
#> drat  0.6811719 -0.6999381 -0.7102139 -0.4487591
#> wt   -0.8676594  0.7824958  0.8879799  0.6587479
#> qsec  0.4186840 -0.5912421 -0.4336979 -0.7082234
#> vs    0.6640389 -0.8108118 -0.7104159 -0.7230967
#> am    0.5998324 -0.5226070 -0.5912270 -0.2432043
#> gear  0.4802848 -0.4926866 -0.5555692 -0.1257043
#> carb -0.5509251  0.5269883  0.3949769  0.7498125
#>             drat         wt        qsec         vs
#> mpg   0.68117191 -0.8676594  0.41868403  0.6640389
#> cyl  -0.69993811  0.7824958 -0.59124207 -0.8108118
#> disp -0.71021393  0.8879799 -0.43369788 -0.7104159
#> hp   -0.44875912  0.6587479 -0.70822339 -0.7230967
#> drat  1.00000000 -0.7124406  0.09120476  0.4402785
#> wt   -0.71244065  1.0000000 -0.17471588 -0.5549157
#> qsec  0.09120476 -0.1747159  1.00000000  0.7445354
#> vs    0.44027846 -0.5549157  0.74453544  1.0000000
#> am    0.71271113 -0.6924953 -0.22986086  0.1683451
#> gear  0.69961013 -0.5832870 -0.21268223  0.2060233
#> carb -0.09078980  0.4276059 -0.65624923 -0.5696071
#>               am       gear        carb
#> mpg   0.59983243  0.4802848 -0.55092507
#> cyl  -0.52260705 -0.4926866  0.52698829
#> disp -0.59122704 -0.5555692  0.39497686
#> hp   -0.24320426 -0.1257043  0.74981247
#> drat  0.71271113  0.6996101 -0.09078980
#> wt   -0.69249526 -0.5832870  0.42760594
#> qsec -0.22986086 -0.2126822 -0.65624923
#> vs    0.16834512  0.2060233 -0.56960714
#> am    1.00000000  0.7940588  0.05753435
#> gear  0.79405876  1.0000000  0.27407284
#> carb  0.05753435  0.2740728  1.00000000
  1. Create a variable called efficiency which is mpg divided by weight. Which car has the max efficiency and what is this value?
  2. Which variable in this dataset has the greatest standard deviation?
  3. How many cars have 3 gears?
  4. How many cars get more than 17 mpg?